刀刀网
您的当前位置:首页2015高考全国卷1理科数学试题及答案解析_[版]9

2015高考全国卷1理科数学试题及答案解析_[版]9

来源:刀刀网
WORD格式整理

2014年普通高等学校招生全国统一考试

全国课标1理科数学

注意事项:

1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准考

证号填写在答题卡上.

2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用

橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回.

第Ⅰ卷

一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题

目要求的一项。

1. 已知集合A={x|x2x30},B={x|-2≤x<2=,则AB=

2A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

(1i)32. =

(1i)2A.1i B.1i C.1i D.1i

3. 设函数f(x),g(x)的定义域都为R,且f(x)时奇函数,g(x)是偶函数,则下列结论正确的是

A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数

C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数

4. 已知F是双曲线C:xmy3m(m0)的一个焦点,则点F到C的一条渐近线的距离为

22A.3 B.3 C.3m D.3m

5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的

概率

1357A. B. C. D.

88886. 如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边

为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,]上的图像大致为

专业技术参考资料

WORD格式整理

7. 执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=

A.

2016715 B. C. D. 35288. 设(0,1sin,则 ),(0,),且tancos22A.32 B.2 D.22

C.39. 不等式组22

xy1的解集记为D.有下面四个命题:

x2y4p1:(x,y)D,x2y2,p2:(x,y)D,x2y2, P3:(x,y)D,x2y3,p4:(x,y)D,x2y1.

其中真命题是

A.p2,P3 B.p1,p4 C.p1,p2 D.p1,P3

10. 已知抛物线C:y8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个焦点,

若FP4FQ,则|QF|=

275A. B. C.3 D.2

2211. 已知函数f(x)=ax3x1,若f(x)存在唯一的零点x0,且x0>0,

则a的取值范围为

32A.(2,+∞) B.(-∞,-2) C.(1,+∞) D.(-∞,

-1)

12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,

则该多面体的个条棱中,最长的棱的长度为

专业技术参考资料

WORD格式整理

A.62 B.42 C.6 D.4

第Ⅱ卷

本卷包括必考题和选考题两个部分。第(13)题-第(21)题为必考题,每个考生都必须作答。第(22)题-第(24)题为选考题,考生根据要求作答。 二.填空题:本大题共四小题,每小题5分。

13. (xy)(xy)的展开式中xy的系数为 .(用数字填写答案)

14. 甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去

过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为 .

15. 已知A,B,C是圆O上的三点,若AO8221(ABAC),则AB与AC的夹角为 . 216. 已知a,b,c分别为ABC的三个内角A,B,C的对边,a=2,且

(2b)(sinAsinB)(cb)sinC,则ABC面积的最大值为 .

三、解答题:解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分12分)已知数列{an}的前n项和为Sn,a1=1,an0,anan1Sn1,其中为

常数.

(Ⅰ)证明:an2an;

(Ⅱ)是否存在,使得{an}为等差数列?并说明理由.

18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测

量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数x和样本方差s(同一组数据用该区间的中点值

作代表);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N(,),其中近

22 专业技术参考资料

WORD格式整理

似为样本平均数x,近似为样本方差s2. (i)利用该正态分布,求P(187.8Z212.2);

(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值为于

区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.

附:150≈12.2.

若Z~N(,),则P(Z)=0.6826,P(2Z2)=0.9544. 19. (本小题满分12分)如图三棱锥ABCA1B1C1中,侧面BB1C1C为菱形,ABB1C.

(Ⅰ) 证明:ACAB1;

o(Ⅱ)若ACAB1,CBB160,

22AB=Bc,求二面角AA1B1C1的余弦值.

x2y2320.(本小题满分12分)已知点A(0,-2),椭圆E:221(ab0)的离心率为,F是

2ab椭圆的焦点,直线AF的斜率为(Ⅰ)求E的方程;

(Ⅱ)设过点A的直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程.

23,O为坐标原点. 3bex121.(本小题满分12分)设函数f(x0aelnx,曲线yf(x)在点(1,f(1)处的切线为

xxye(x1)2. (Ⅰ)求a,b; (Ⅱ)证明:f(x)1.

请考生从第(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD

是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE

(Ⅰ)证明:∠D=∠E;

(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:

△ADE为等边三角形.

专业技术参考资料

WORD格式整理

x2tx2y21,23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C:直线l:49y22t(t为参数).

(Ⅰ)写出曲线C的参数方程,直线l的普通方程;

(Ⅱ)过曲线C上任一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值. 24. (本小题满分10分)选修4—5:不等式选讲若a0,b0,且

(Ⅰ)求ab的最小值;

(Ⅱ)是否存在a,b,使得2a3b6?并说明理由.

33o11ab. ab 专业技术参考资料

WORD格式整理

一、选择题

1—5 ADCAD 6—10 CDCBB 11. C 12. B 二、填空题

13. -20 14. A 15.

 16. 3 2三、解答题:解答应写出文字说明,证明过程或演算步骤。 17. (本小题满分12分) 解:

(Ⅰ)由题设,anan1Sn1,an1an2Sn11

两式相减得an1(an2an)an1,而an10,an2an (Ⅱ)a1a2S11a11,而a11,解得 a21,又{an}

令2a2a1a3,解得4。此时a11,a23,a35,an2an4

{an}是首项为1,公差为2的等差数列。 即存在4,使得{an}为等差数列。 18.(本小题满分12分) 解:

(Ⅰ)x1700.02+1800.09+1900.22+2000.33+2100.24+2200.08+2300.02=200

(Ⅱ)

19. (本小题满分12分)

解:

专业技术参考资料

WORD格式整理

20.(本小题满分12分)

专业技术参考资料

WORD格式整理

21.(本小题满分12分)

22.(本小题满分10分)

(1)证明:由题设得,A,B,C,D四点共圆,所以,DCBE

CBCE,CBEE

所以DE

专业技术参考资料

WORD格式整理

23.(本小题满分10分)

24. (本小题满分10分)

专业技术参考资料

因篇幅问题不能全部显示,请点此查看更多更全内容