一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如........下: 性别 是否需要志愿者 男 女 需要 40 30 不需要 160 270 2 由K2n(adbc)500(4027030160)22(ab)(cd)(ac)(bd)算得K200300704309.967 附表:
P(K2k) 0.050 0.010 0.001k 3.841 6.635 10.828参照附表,则下列结论正确的是(
)
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好
A.①③ B.①④ C.②③ D.②④
2. 设f(x)=(e-x-ex)(11
2x+1-2
),则不等式f(x)<f(1+x)的解集为( A.(0,+∞) B.(-∞,-1
2
)
C.(-11
2,+∞) D.(-2,0)
3. 执行如图所示的程序框图,如果输入的t=10,则输出的i=( )
第 1 页,共 17 页
)
A.4 C.6 ( )
A.610+35+15 B.610+35+14 C.610+35+15 D.410+35+15
B.5 D.7
4. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 5. 2016年3月“”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 6. 设Sn是等差数列{an}的前项和,若A.1 B.2 C.3 D.4
第 2 页,共 17 页
a55S,则9( ) a39S5x2y27. 椭圆C:1的左右顶点分别为A1,A2,点P是C上异于A1,A2的任意一点,且直线PA1斜率的
43取值范围是1,2,那么直线PA2斜率的取值范围是( )
A.313313, B., C.,1 D.,1 424824【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
8. 487被7除的余数为a(0≤a<7),则A.4320 B.﹣4320
C.20
D.﹣20
展开式中x﹣的系数为( )
3
9. 已知全集为R,且集合A{x|log2(x1)2},B{x|A.(1,1) B.(1,1] C.[1,2) D.[1,2]
x20},则A(CRB)等于( ) x1【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
10.在ABC中,a10,B60,C45,则等于( )
A.103 B.10(31) C.31 D.103 11.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是,则mn的值是( )
A.10 B.11 C.12 D.13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 12.定义在R上的偶函数f(x)满足f(x3)f(x),对x1,x2[0,3]且x1x2,都有
f(x1)f(x2)0,则有( )
x1x2A.f(49)f()f(81) B.f(49)f(81)f() C. f()f(49)f(81) D.f()f(81)f(49)
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.若点p(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为
第 3 页,共 17 页
x2y214.已知过双曲线221(a0,b0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若
ab|AB||BF1|,且ABF190,则双曲线的离心率为( )
A.522 B.522 C.632 D.632
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
15.设xR,记不超过x的最大整数为[x],令xx[x].现有下列四个命题: ①对任意的x,都有x1[x]x恒成立; ②若x(1,3),则方程sin2xcos2[x]1的实数解为6;
31③若an(nN),则数列an的前3n项之和为n2n;
223④当0x100时,函数f(x)sin[x]sin22nx1的零点个数为m,函数g(x)[x]xx1的 3零点个数为n,则mn100.
其中的真命题有_____________.(写出所有真命题的编号)
【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)
【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.
三、解答题(本大共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
17.(本小题满分12分)
某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.
(1)求总人数N和分数在110-115分的人数;
第 4 页,共 17 页
(2)现准备从分数在110-115的名学生(女生占
1)中任选3人,求其中恰好含有一名女生的概率; 3(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y进行分析,下面是该生7次考试的成绩. 88 83 117 92 108 数学 物理 94 91 108 96 104 100 101 112 106 已知该生的物理成绩y与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?
附:对于一组数据(u1,v1),(u2,v2)……(un,vn),其回归线vu的斜率和截距的最小二乘估计分
^n别为:(ui1niu)(viv)i,avu.
^^(ui1u)2
18.(本小题满分10分)选修4-4:坐标系与参数方程.
第 5 页,共 17 页
x=1+3cos α
在直角坐标系中,曲线C1:(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐
y=2+3sin α
标系,C2的极坐标方程为ρ=
2πsin(θ+)
4
.
(1)求C1,C2的普通方程;
3π
(2)若直线C3的极坐标方程为θ=(ρ∈R),设C3与C1交于点M,N,P是C2上一点,求△PMN的面
4积.
19.(本小题满分12分)
在ABC中,角A,B,C所对的边分别为a,b,c,(31)acosB2bcosAc, (Ⅰ)求
tanA
的值; tanB
6,B(Ⅱ)若a
4,求ABC的面积.
20.(本题满分14分)已知函数f(x)xalnx.
(1)若f(x)在[3,5]上是单调递减函数,求实数a的取值范围;
(2)记g(x)f(x)(2a)lnx2(b1)x,并设x1,x2(x1x2)是函数g(x)的两个极值点,若b求g(x1)g(x2)的最小值.
27, 2第 6 页,共 17 页
21.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是2cos,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是x24t(为参数).
y3t(1)写出曲线C的参数方程,直线的普通方程; (2)求曲线C上任意一点到直线的距离的最大值.
22.已知等差数列
满足:=2,且,的通项公式。
成等比数列。
若存在,求n的最小
(1) 求数列(2)记为数列
的前n项和,是否存在正整数n,使得
值;若不存在,说明理由.
第 7 页,共 17 页
重庆市南坪中学校2018-2019学年上学期高三期中数学模拟题(参)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】D
【解析】解析:本题考查性检验与统计抽样调查方法.由于9.9676.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D. 2. 【答案】
【解析】选C.f(x)的定义域为x∈R,
11
由f(x)=(e-x-ex)(x-)得
2+1211
f(-x)=(ex-e-x)(x-)
2-+12=(e
x
-e-x)(1+) 2x+12
-1
11
=(e-x-ex)(x-)=f(x),
2+12∴f(x)在R上为偶函数,
∴不等式f(x)<f(1+x)等价于|x|<|1+x|,
1
即x2<1+2x+x2,∴x>-,
2
1
即不等式f(x)<f(1+x)的解集为{x|x>-},故选C.
23. 【答案】
【解析】解析:选B.程序运行次序为 第一次t=5,i=2; 第二次t=16,i=3; 第三次t=8,i=4;
第四次t=4,i=5,故输出的i=5. 4. 【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE^平面
11123+创2ABCD,如图所示,所以此四棱锥表面积为S=2创6?10+创222=610+35+15,故选C.
45+2?6
第 8 页,共 17 页
V46C4626B10103DE11A
5. 【答案】C
6. 【答案】A 【解析】1111]
9(a1a9)S9a2试题分析:951.故选A.111] S55(a1a5)5a32考点:等差数列的前项和. 7. 【答案】B
8. 【答案】B
解析:解:487=(49﹣1)7=∵487被7除的余数为a(0≤a<7), ∴a=6, ∴
展开式的通项为Tr+1=
,
﹣
+…+
﹣1,
令6﹣3r=﹣3,可得r=3, ∴
展开式中x﹣的系数为
3
=﹣4320,
第 9 页,共 17 页
故选:B.. 9. 【答案】C
10.【答案】B 【解析】
试题分析:由题意得,B60,C45,所以A75,由正弦定理,得
0ac sinAsinCcasinC10sin450sinAsin750102210(31),故选B.1 624考点:正弦定理. 11.【答案】C
788884869290m9588,解得m3.乙组中8892,
7所以n9,所以mn12,故选C.
【解析】由题意,得甲组中12.【答案】A 【解析】
考
点:1、函数的周期性;2、奇偶性与单调性的综合.1111]
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】:2x﹣y﹣1=0
解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点, ∴圆心与点P确定的直线斜率为∴弦MN所在直线的斜率为2,
=﹣,
第 10 页,共 17 页
则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0. 故答案为:2x﹣y﹣1=0 14.【答案】B 【
解
析
】
15.【答案】①③
【解析】对于①,由高斯函数的定义,显然x1[x]x,①是真命题;对于②,由sin2xcos2[x]1得,
sin2x1cos2[x],即sin2xsin2[x].当1x2 时,0x11,0sin(x1)sin1,此时
方程无解;当2x3 时,0x21,0sin(x2)sin1,sin2xsin2[x]化为sin2(x1)sin21,此时sin2xsin2[x]化为sin(x2)sin2,所以x22或x22,即x4或x,所以原方
n程无解.故②是假命题;对于③,∵an(nN),∴a10,a20,a31,3333123143n13n[n]n1a41,…,a3n1a[n]n,所以数列an的前3n项之和,3n3333321为3[12(n1)]nnn,故③是真命题;对于④,由
22第 11 页,共 17 页
16.【答案】48 【
解
析
】
第 12 页,共 17 页
三、解答题(本大共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
817.【答案】(1)60,n6;(2)P;(3)115.
15【解析】
试
题解析:
(1)分数在100-110内的学生的频率为P1(0.040.03)50.35,所以该班总人数为N2160, 0.35分数在110-115内的学生的频率为P21(0.010.040.050.040.030.01)50.1,分数在110-115内的人数n600.16.
(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为A1,A2,A3,A4,女生为B1,B2,从6名学生中选出3人的基本事件为:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),
(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2)共15个.
其中恰 好含有一名女生的基本事件为(A1,B1),(A1,B2),(A2,B2),(A2,B1),(A3,B1),(A3,B2),(A4,B1),
(A4,B2),共8个,所以所求的概率为P(3)x1008. 151217178812100;
76984416y100100;
7由于与y之间具有线性相关关系,根据回归系数公式得到
第 13 页,共 17 页
^497b0.5,a1000.510050,
994∴线性回归方程为y0.5x50, ^∴当x130时,y115.1
考点:1.古典概型;2.频率分布直方图;3.线性回归方程.
【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数a,b,一定要将题目中所给数据与公式中的a,b,c相对应,再进一步求解.在求解过程中,由于a,b的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为b,常数项为这与一次函数的习惯表示不同. 18.【答案】
x=1+3cos α
【解析】解:(1)由C1:(α为参数)
y=2+3sin α
得(x-1)2+(y-2)2=9(cos2α+sin2α)=9. 即C1的普通方程为(x-1)2+(y-2)2=9, 由C2:ρ=
2π
sin(θ+)
4
得
ρ(sin θ+cos θ)=2, 即x+y-2=0,
即C2的普通方程为x+y-2=0.
(2)由C1:(x-1)2+(y-2)2=9得 x2+y2-2x-4y-4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 3π
将θ=代入上式得
4ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,
∴|MN|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=32. 3
C3:θ=π(ρ∈R)的直角坐标方程为x+y=0,
4
2
∴C2与C3是两平行直线,其距离d==2. 2
11
∴△PMN的面积为S=|MN|×d=×32×2=3.
22即△PMN的面积为3.
第 14 页,共 17 页
19.【答案】
【解析】解: (Ⅰ)由(31)acosB2bcosAc及正弦定理得
(31)sinAcosB2sinBcosAsinCsinAcosB+cosAsinB, (3分)
tanA∴3sinAcosB3sinBcosA,∴3(6分)
tanB(Ⅱ)tanA3tanB3,A3,basinB42, (8分) sinAsin36sin62, (10分) 411621(33)(12分) ∴ABC的面积为absinC622242sinCsin(AB)20.【答案】
【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.
(2)∵g(x)xalnx(2a)lnx2(b1)xx2lnx2(b1)x,
22
第 15 页,共 17 页
21.【答案】(1)参数方程为【解析】
x1cos14,3x4y60;(2).
5ysin2
试题分析:(1)先将曲线C的极坐标方程转化为直角坐标系下的方程,可得(x1)y1,利用圆的参数方
2程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C上任一点坐标,
第 16 页,共 17 页
用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:
(1)曲线C的普通方程为2cos,∴xy2x0,
222x1cos∴(x1)y1,所以参数方程为,
ysin直线的普通方程为3x4y60.
(2)曲线C上任意一点(1cos,sin)到直线的距离为
33cos4sin65sin()91414d,所以曲线C上任意一点到直线的距离的最大值为.
555522考点:1.极坐标方程;2.参数方程. 22.【答案】见解析。
【解析】(1)设数列{an}的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d), 化简得d2﹣4d=0,解得d=0或4, 当d=0时,an=2,
当d=4时,an=2+(n﹣1)•4=4n﹣2。 (2)当an=2时,Sn=2n,显然2n<60n+800, 此时不存在正整数n,使得Sn>60n+800成立, 当an=4n﹣2时,Sn=
解得n>40,或n<﹣10(舍去),
此时存在正整数n,使得Sn>60n+800成立,n的最小值为41, 综上,当an=2时,不存在满足题意的正整数n, 当an=4n﹣2时,存在满足题意的正整数n,最小值为41
=2n2,
令2n2>60n+800,即n2﹣30n﹣400>0,
第 17 页,共 17 页
因篇幅问题不能全部显示,请点此查看更多更全内容